论文标题

为什么生物特征的时间持久性对于分类性能如此有价值

Why Temporal Persistence of Biometric Features is so Valuable for Classification Performance

论文作者

Friedman, Lee, Stern, Hal, Price, Larry R., Komogortsev, Oleg V.

论文摘要

人们普遍认为,相对永久性(即更持久)的特征比较少的永久特征更有价值。尽管这一发现是直观的,但目前尚无目前确定生物识别分析时间持久性中的位置会产生的影响。在本文中,我们回答了这个问题。在最近的一份报告中,我们引入了类内相关系数(ICC),作为此类特征的时间持久性指数。在该报告中,我们还表明,在14个数据集中的12个中,只选择最持久的特征在12个数据集中产生了出色的性能。受这些经验结果的启发,我们提出了一种新的方法,该方法使用合成特征研究生物特征识别研究的哪些方面受特征的时间持久性的影响。我们表明的是,使用更暂时的特征会对相似性得分分布产生影响,这些分布解释了为什么这种质量对于生物识别性能如此关键。通过对两个数据集的分析,一个基于眼动的分析和一个基于步态的分析,可以在很大程度上加强了用合成数据识别的结果。合成数据和真实数据之间存在一个差异:在实际数据中,特征相互相关,而相互关系的水平随着ICC的增加而增加。这种增加的Hhttps://www.overleaf.com/project/5E2B14694C5DC600017292E6在实际数据中相互关系与冒险者相似性分布分布的差异增加有关。通过去相关步骤删除这些真实数据集的这些相互关系产生的结果与合成特征获得的结果非常相似。

It is generally accepted that relatively more permanent (i.e., more temporally persistent) traits are more valuable for biometric performance than less permanent traits. Although this finding is intuitive, there is no current work identifying exactly where in the biometric analysis temporal persistence makes a difference. In this paper, we answer this question. In a recent report, we introduced the intraclass correlation coefficient (ICC) as an index of temporal persistence for such features. In that report, we also showed that choosing only the most temporally persistent features yielded superior performance in 12 of 14 datasets. Motivated by those empirical results, we present a novel approach using synthetic features to study which aspects of a biometric identification study are influenced by the temporal persistence of features. What we show is that using more temporally persistent features produces effects on the similarity score distributions that explain why this quality is so key to biometric performance. The results identified with the synthetic data are largely reinforced by an analysis of two datasets, one based on eye-movements and one based on gait. There was one difference between the synthetic and real data: In real data, features are intercorrelated, with the level of intercorrelation increasing with increasing ICC. This increasedhttps://www.overleaf.com/project/5e2b14694c5dc600017292e6 intercorrelation in real data was associated with an increase in the spread of the impostor similarity score distributions. Removing these intercorrelations for real datasets with a decorrelation step produced results which were very similar to that obtained with synthetic features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源