论文标题

由布朗运动驱动的高维矩阵过程的特征值分布

Eigenvalue distributions of high-dimensional matrix processes driven by fractional Brownian motion

论文作者

Song, Jian, Yao, Jianfeng, Yuan, Wangjun

论文摘要

在本文中,我们研究了经验频谱分布的高维行为$ \ {l_n(t),t \ in [0,t] \} $,用于一类$ n \ times n $ symmetric/symmetian/hermitian随机矩阵,其条目的条目是由随机差异方程式通过fractaction brownian brownian $ hurst parameter of hurst paramers of hurst paramers的溶液产生的(1)。对于Wigner-type矩阵,我们获得了$ \ {l_n(t),t \ in [0,t] \} _ {n \ in \ Mathbb n} $ in $ c([0,T],\ Mathbf P(\ Mathbb r)$ scute in \ Cite in \ cite2010};对于WishArt-Type矩阵,我们获得了$ \ {l_n(t),t \ in [0,t] \} _ {n \ in \ mathbb n} $ on $ c([0,t],\ mathbf p(\ mathbf p(\ mathb r))$ y appendenty in appendenty cromptige croment cromptige crestix prognix prognity cromptignix priffectix, $ \ {l_n(t),t \ in [0,t] \} $作为$ n \ to \ infty $的极限也被表征。

In this article, we study high-dimensional behavior of empirical spectral distributions $\{L_N(t), t\in[0,T]\}$ for a class of $N\times N$ symmetric/Hermitian random matrices, whose entries are generated from the solution of stochastic differential equation driven by fractional Brownian motion with Hurst parameter $H \in(1/2,1)$. For Wigner-type matrices, we obtain almost sure relative compactness of $\{L_N(t), t\in[0,T]\}_{N\in\mathbb N}$ in $C([0,T], \mathbf P(\mathbb R))$ following the approach in \cite{Anderson2010}; for Wishart-type matrices, we obtain tightness of $\{L_N(t), t\in[0,T]\}_{N\in\mathbb N}$ on $C([0,T], \mathbf P(\mathbb R))$ by tightness criterions provided in Appendix \ref{subset:tightness argument}. The limit of $\{L_N(t), t\in[0,T]\}$ as $N\to \infty$ is also characterised.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源