论文标题

优化确定性等效物的随机控制

Stochastic control of optimized certainty equivalents

论文作者

Veraguas, Julio Backhoff, Reppen, A. Max, Tangpi, Ludovic

论文摘要

优化的确定性等效物(OCE)是从业者和学者广泛使用的风险措施家族。这主要是由于它的障碍性以及它包含重要例子的事实,包括熵风险度量和风险的平均值。在这项工作中,我们考虑了随机的最佳控制问题,其中客观标准是由OCE风险度量给出的,或者换句话说,这是受控扩散的风险最小化问题。出现了一个主要的困难,因为欧斯通常是不一致的。然而,通过扩大国家空间,我们可以替代公平一般性的时间一致性。这使我们能够得出动态的编程原理,从而恢复了(风险中性)随机控制理论的中心结果。特别是,我们表明,我们的风险最小化问题的价值可以通过汉密尔顿(Jacobii-Bellman)方程的粘度解决方案来表征。我们在适当的技术条件下进一步建立了后者的独特性。

Optimized certainty equivalents (OCEs) is a family of risk measures widely used by both practitioners and academics. This is mostly due to its tractability and the fact that it encompasses important examples, including entropic risk measures and average value at risk. In this work we consider stochastic optimal control problems where the objective criterion is given by an OCE risk measure, or put in other words, a risk minimization problem for controlled diffusions. A major difficulty arises since OCEs are often time inconsistent. Nevertheless, via an enlargement of state space we achieve a substitute of sorts for time consistency in fair generality. This allows us to derive a dynamic programming principle and thus recover central results of (risk-neutral) stochastic control theory. In particular, we show that the value of our risk minimization problem can be characterized via the viscosity solution of a Hamilton--Jacobi--Bellman--Issacs equation. We further establish the uniqueness of the latter under suitable technical conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源