论文标题
CLCNET:使用复杂线性编码的助听器的深度学习降噪
CLCNet: Deep learning-based Noise Reduction for Hearing Aids using Complex Linear Coding
论文作者
论文摘要
降噪是现代助听器的重要组成部分,并包含在大多数市售设备中。但是,基于深度学习的最新算法要么不考虑实时和频率分辨率在非常嘈杂的条件下限制或导致质量差。为了改善嘈杂环境中的单声道语音增强,我们提出了CLCNET,这是一个基于复杂的有价值的线性编码的框架。首先,我们定义了由线性预测编码(LPC)激励的复杂线性编码(CLC),该编码(LPC)应用于复杂的频域中。其次,我们提出了一个结合复杂频谱输入和系数输出的框架。第三,我们为复杂的有价值光谱图定义了参数归一化,该频谱图符合低延迟和在线处理。对我们的CLCNET进行了评估,并在Eurom数据库的混合物和带有助听器记录的现实世界噪声数据集的混合物中进行了评估,并将其与传统的现实价值Wiener-Filter的收益进行了比较。
Noise reduction is an important part of modern hearing aids and is included in most commercially available devices. Deep learning-based state-of-the-art algorithms, however, either do not consider real-time and frequency resolution constrains or result in poor quality under very noisy conditions. To improve monaural speech enhancement in noisy environments, we propose CLCNet, a framework based on complex valued linear coding. First, we define complex linear coding (CLC) motivated by linear predictive coding (LPC) that is applied in the complex frequency domain. Second, we propose a framework that incorporates complex spectrogram input and coefficient output. Third, we define a parametric normalization for complex valued spectrograms that complies with low-latency and on-line processing. Our CLCNet was evaluated on a mixture of the EUROM database and a real-world noise dataset recorded with hearing aids and compared to traditional real-valued Wiener-Filter gains.