论文标题

大规模随机访问中更快的活动和数据检测:一种多臂强盗方法

Faster Activity and Data Detection in Massive Random Access: A Multi-armed Bandit Approach

论文作者

Dong, Jialin, Zhang, Jun, Shi, Yuanming, Wang, Jessie Hui

论文摘要

本文调查了使用大量物联网设备的无赠款随机访问。通过将数据符号嵌入签名序列中,可以实现关节设备活动检测和数据解码,但是,这大大提高了计算复杂性。已经采用了享有较低触电复杂性的坐标下降算法来解决检测问题,但是以前的工作通常采用随机坐标选择策略,从而导致趋同的收敛速度缓慢。在本文中,我们开发了多军匪徒方法,以通过坐标下降进行更有效的检测,这在坐标选择中的探索和剥削之间进行了微妙的权衡。具体而言,我们首先提出了一种基于匪徒的策略,即伯努利采样,以加快坐标下降的收敛速率,通过学习哪些坐标将导致目标函数的更具侵略性的下降。为了进一步提高收敛速度,建立了内部的多军匪徒问题,以学习Bernoulli抽样的勘探政策。融合率分析和仿真结果均可表明,与最先进的算法相比,提出的基于匪徒的算法具有更快的时间复杂性。此外,我们提出的算法适用于不同的情况,例如,使用低精度类似物到数字转换器(ADC)进行大量随机访问。

This paper investigates the grant-free random access with massive IoT devices. By embedding the data symbols in the signature sequences, joint device activity detection and data decoding can be achieved, which, however, significantly increases the computational complexity. Coordinate descent algorithms that enjoy a low per-iteration complexity have been employed to solve the detection problem, but previous works typically employ a random coordinate selection policy which leads to slow convergence. In this paper, we develop multi-armed bandit approaches for more efficient detection via coordinate descent, which make a delicate trade-off between exploration and exploitation in coordinate selection. Specifically, we first propose a bandit based strategy, i.e., Bernoulli sampling, to speed up the convergence rate of coordinate descent, by learning which coordinates will result in more aggressive descent of the objective function. To further improve the convergence rate, an inner multi-armed bandit problem is established to learn the exploration policy of Bernoulli sampling. Both convergence rate analysis and simulation results are provided to show that the proposed bandit based algorithms enjoy faster convergence rates with a lower time complexity compared with the state-of-the-art algorithm. Furthermore, our proposed algorithms are applicable to different scenarios, e.g., massive random access with low-precision analog-to-digital converters (ADCs).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源