论文标题

关于素的多项式,阵尾平均值和一多裂群

On Polynomials in Primes, Ergodic Averages and Monothetic Groups

论文作者

Verger-Gaugry, Jean-Louis, Hancl, Jaroslav, Nair, Radhakrishnan

论文摘要

令$ g $表示一个紧凑的一分子群,然后让$$ρ(x)=α_kx^k + \ ldots +α_1x +α_0,$ $ $α_0,\ ldots,α_k$是$ g $的元素,其中一个是$ g $的生成器。令$(p_n)_ {n \ geq 1} $表示有理数的序列。假设$ f \ in l^{p}(g)$ for $ p> 1 $。众所周知,如果$$ a_ {n} f(x):= {1 \ aver n} \ sum_ {n = 1}^{n} f(x +ρ(p_n))\ qquad(n = 1,2,\ ldots)哈尔措施。我们表明,如果连接$ g $,则限制为$ \ int_ {g} fdλ$。如果$ g $是$ a $ a-adic Integers,这是一个完全断开的组,则限制是用傅立叶乘数来描述的,这些乘数是高斯总和的概括。

Let $G$ denote a compact monothetic group, and let $$ρ(x) = α_k x^k + \ldots + α_1 x + α_0,$$ where $α_0, \ldots , α_k$ are elements of $G$ one of which is a generator of $G$. Let $(p_n)_{n\geq 1}$ denote the sequence of rational prime numbers. Suppose $f \in L^{p}(G)$ for $p> 1$. It is known that if $$A_{N}f(x) := {1 \over N} \sum_{n=1}^{N} f(x + ρ(p_n)) \qquad (N=1,2, \ldots ),$$ then the limit $\lim _{n\to \infty} A_Nf(x)$ exists for almost all $x$ with respect Haar measure. We show that if $G$ is connected then the limit is $\int_{G} f dλ$. In the case where $G$ is the $a$-adic integers, which is a totally disconnected group, the limit is described in terms of Fourier multipliers which are generalizations of Gauss sums.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源