论文标题

电位曲率在物理学中的主要作用;应用于惯性

Prime Role of the Curvature of Potentials in Physics; Application to Inertia

论文作者

Caltagirone, Jean-Paul

论文摘要

惯性或重力电位的曲率定义为将加速度分解为无旋转和螺线管成分的分解,从而可以结合宏观物理的某些结构域。经过两次验证物理学后,一个对毛细血管效应的曲率计算,第二种是通过重力效应对光偏转的第二个,将电位曲率的概念应用于惯性。分解的每个贡献的物理分析都是在流体力学的经典示例上进行的,流体力学是向后的阶梯流动,其中惯性在再循环长度上起着优势作用。

The curvature of the inertial or gravitational potentials defined as a Hodge-Helmholtz decomposition of acceleration into an irrotational and a solenoidal components, enable to federate certain domains of macroscopic physics. After two verifications in physics, one on the calculation of the curvatures for capillary effects and the second on the deflection of light by a gravitational effect, the concept of curvature of the potential is applied to the inertia. The physical analysis of each of the contributions of the decomposition is carried out on a classic example of fluid mechanics, the backward-facing step flow where inertia plays a preponderant role on the recirculation length.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源