论文标题

Euler样矢量场,正常形式和各向同性嵌入

Euler-like vector fields, normal forms, and isotropic embeddings

论文作者

Meinrenken, Eckhard

论文摘要

歧管的子曼膜n的管状邻域嵌入的细菌与M附近的Euler样矢量场的细菌属于一对一的对应关系。在许多情况下,这会降低与给定结构构造的几何结构的“正常形式结果”的证明。我们在各种示例中说明了这一原理,包括莫尔斯·鲍特·莱姆玛(Morse-Bott Lemma),温斯坦(Weinstein)的拉格朗日(Weinstein)嵌入定理以及Zung的线性化定理,用于适当的lide lie gropsoids。在本文的第二部分中,我们将理论扩展到了加权上下文,并应用了各向同性嵌入。

Germs of tubular neighborhood embeddings for submanifolds N of manifolds M are in one-one correspondence with germs of Euler-like vector fields near N. In many contexts, this reduces the proof of `normal forms results' for geometric structures to the construction of an Euler-like vector field compatible with the given structure. We illustrate this principle in a variety of examples, including the Morse-Bott lemma, Weinstein's Lagrangian embedding theorem, and Zung's linearization theorem for proper Lie groupoids. In the second part of this article, we extend the theory to a weighted context, with an application to isotropic embeddings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源