论文标题
行星形成重力崩溃的要求---开尔文 - 霍尔姆尔茨和非线性流媒体不稳定的量表的影响
Requirements for gravitational collapse in planetesimal formation --- the impact of scales set by Kelvin-Helmholtz and nonlinear streaming instability
论文作者
论文摘要
行星的形成是行星形成理论中未解决的问题。克服死区域尘埃生长屏障的一个突出情况是当地过度密集的地区的重力崩溃,该区域可稳健地产生$ \ sim $ \ sim $ 100公里。尽管如此,地球形成的条件仍然不清楚。为了崩溃,过度密度的自我重大必须克服大尺度上的恒星潮汐破坏,并在小尺度上湍流扩散。在这里,我们将流式和开尔文 - 螺旋的不稳定性联系起来,它们都将重力塌陷尺度上的颗粒密度直接与行星形成。我们通过对流媒体和开尔文 - 霍尔莫茨不稳定性和行星形成的3D流体力学模拟来支持我们的分析结果。我们发现,粒子中平面层的垂直范围和流态丝的径向宽度是由相同的特征长度尺度设置的,因此管理着行星明确的尺度上的湍流扩散强度。我们介绍并成功测试了一个崩溃标准:$ 0.1Qβε^{ - 1} Z^{ - 1} \ Lessim 1 $,并表明即使对于太阳金属性,行星可能也会在足够巨大的磁盘的死区中形成。对于给定的气体参数$ Q $,压力梯度$β$,金属性$ z $和本地粒子增强$ε$,崩溃标准还提供了一系列不稳定的尺度,为研究初始行星质量分布提供了有希望的途径。行星塌陷并不需要流式不稳定,而是增加$ε$可以发展到不稳定性的系统。
The formation of planetesimals is an unsolved problem in planet formation theory. A prominent scenario for overcoming dust growth barriers in dead zones is the gravitational collapse of locally over-dense regions, shown to robustly produce $\sim$100 km sized objects. Still, the conditions under which planetesimal formation occurs remain unclear. For collapse to proceed, the self-gravity of an overdensity must overcome stellar tidal disruption on large scales and turbulent diffusion on small scales. Here, we relate the scales of streaming and Kelvin-Helmholtz instability, which both regulate particle densities on the scales of gravitational collapse, directly to planetesimal formation. We support our analytic findings by performing 3D hydrodynamical simulations of streaming and Kelvin-Helmholtz instability and planetesimal formation. We find that the vertical extent of the particle mid-plane layer and the radial width of streaming instability filaments are set by the same characteristic length scale, thus governing the strength of turbulent diffusion on the scales of planetesimal formation. We present and successfully test a collapse criterion: $0.1 Q βε^{-1}Z^{-1} \lesssim 1$ and show that even for Solar metallicities, planetesimals can form in dead zones of sufficiently massive disks. For a given gas Toomre-parameter $Q$, pressure gradient $β$, metallicity $Z$ and local particle enhancement $ε$, the collapse criterion also provides a range of unstable scales, instituting a promising path for studying initial planetesimal mass distributions. Streaming instability is not required for planetesimal collapse, but by increasing $ε$, can evolve a system to instability.