论文标题

各种积分点的多元正态分布

Multivariate normal distribution for integral points on varieties

论文作者

El-Baz, Daniel, Loughran, Daniel, Sofos, Efthymios

论文摘要

给定$ \ mathbb {q} $的品种,我们研究了将坐标数的数量分布,因为我们改变了一个不可或缺的点。 在合适的假设下,我们表明这具有多元正态分布。我们将其推广到更一般的魏尔除数,在那里我们获得了对协方差矩阵的几何解释。 为了我们的结果,我们开发了适用于相当通用整数序列的ERDőS-KAC定理的版本,不需要分布级的积极指数。

Given a variety over $\mathbb{Q}$, we study the distribution of the number of primes dividing the coordinates as we vary an integral point. Under suitable assumptions, we show that this has a multivariate normal distribution. We generalise this to more general Weil divisors, where we obtain a geometric interpretation of the covariance matrix. For our results we develop a version of the Erdős-Kac theorem that applies to fairly general integer sequences and does not require a positive exponent of level of distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源