论文标题

超平面的超平面切片

Hyperplane Sections of Hypersurfaces

论文作者

Cheng, Yiran

论文摘要

我们在平滑立方三倍的超平面截面上计算了一些线的数值不变性。我们还证明,对于任何流畅的高度表面$ x \ subset \ mathbb p^{n+1} $ of度量$ d $在代数封闭的特征零字段上,如果$ d> n> n> n> n> 1 $和$(n,d)\ neq(2,3),(2,4),(3,4),(3,3,4)$,然后是一般超级截面,仅在许多其他部分中属于某些属于某些属于该属于的东西。

We compute some numerical invariants of the lines on hyperplane sections of a smooth cubic threefold over complex numbers. We also prove that for any smooth hypersurface $X\subset \mathbb P^{n+1}$ of degree $d$ over an algebraically closed field of characteristic zero, if $d>n>1$ and $(n,d)\neq (2,3),(3,4)$, then a general hyperplane section only admits finitely many others which are isomorphic to it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源