论文标题
DS阻塞及其现象学后果
A dS obstruction and its phenomenological consequences
论文作者
论文摘要
在本说明中,我们观察到,Abelian $ p $ - 形式的通量可以稳定阳性的失控电位,从而导致紧凑到较低维度后的参数控制的DE Sitter解决方案。当4D到2D压缩时,DS溶液是可稳定的,而所有较高维度的情况都不稳定。这些DS解决方案的存在要求满足涉及潜在衍生物的某些不平等和满足$ p $ - 形式量表的耦合。在简单的弦乐示例(在Maldacena-nuñez的范围之外)中,这种不平等并不满足,这毫不奇怪地避免了DS解决方案的这一路线。我们可以将技术应用于标准模型中的$ DS_2 $解决方案,以及额外的失控标量(例如Quintessence)。要求避免使用这些,导致(弱)现象学限制在细胞结构常数和QCD轴轴耦合的时间变化上。
In this note we observe that positive runaway potentials can generically be stabilized by abelian $p$-form fluxes, leading to parametrically controlled de Sitter solutions after compactification to a lower dimension. When compactifying from 4d to 2d the dS solutions are metastable, whereas all higher dimensional cases are unstable. The existence of these dS solutions require that a certain inequality involving the derivatives of the potential and $p$-form gauge coupling is satisfied. This inequality is not satisfied in simple stringy examples (outside of the scope of Maldacena-Nuñez), which unsurprisingly avoid this route to dS solutions. We can apply our techniques to construct $dS_2$ solutions in the Standard Model plus an additional runaway scalar such as quintessence. Demanding that these are avoided leads to (weak) phenomenological constraints on the time variation of the fine structure constant and QCD axion-photon coupling.