论文标题
使用统一的自旋轨道溢出筛选,对磁性和非磁性2D拓扑材料进行计算搜索
Computational Search for Magnetic and Non-magnetic 2D Topological Materials using Unified Spin-orbit Spillage Screening
论文作者
论文摘要
二维拓扑材料(TMS)具有多种属性,使其对包括Spintronics和量子计算在内的应用具有吸引力。但是,只有少数这样的实验材料。为了帮助发现新的2D TMS,我们开发了一种统一且廉价的方法,以高通量方式使用基于密度的功能理论的旋转旋转漏洞,引起的渗透性和相关技术,以高通量方式识别磁性和非磁性2D TMS,包括间隙和半金属拓扑分类。我们首先计算JARVIS-DFT数据集中〜1000 2D材料的自旋轨道溢出(https://www.ctcms.nist.gov/~knc6/jvasp.html),从而产生了122个具有高刺激值的材料。然后,我们使用Wannier-interpolation来携带Z2,Chern-number,异常霍尔电导率,Curie温度和边缘状态计算,以进一步支持预测。我们确定了各种拓扑非平凡的类别,例如量子旋转霍尔绝缘子(QSHI),量子异常的霍尔绝缘子(QAHI)和半学。对于一些预测的材料,我们运行G0W0+SOC和DFT+U计算。我们发现,当我们引入多体效应时,只有少数材料保留了非平凡的频率学,这表明高级DFT方法在预测2D拓扑材料中的重要性。然而,作为第一步,自动溢出筛选和Wannier-诉求为查找新的拓扑材料和缩小候选者的实验合成和表征提供了有用的预测。
Two-dimensional topological materials (TMs) have a variety of properties that make them attractive for applications including spintronics and quantum computation. However, there are only a few such experimentally known materials. To help discover new 2D TMs, we develop a unified and computationally inexpensive approach to identify magnetic and non-magnetic 2D TMs, including gapped and semi-metallic topological classifications, in a high-throughput way using density functional theory-based spin-orbit spillage, Wannier-interpolation, and related techniques. We first compute the spin-orbit spillage for the ~1000 2D materials in the JARVIS-DFT dataset (https://www.ctcms.nist.gov/~knc6/JVASP.html ), resulting in 122 materials with high-spillage values. Then, we use Wannier-interpolation to carry-out Z2, Chern-number, anomalous Hall conductivity, Curie temperature, and edge state calculations to further support the predictions. We identify various topologically non-trivial classes such as quantum spin-hall insulators (QSHI), quantum anomalous-hall insulators (QAHI), and semimetals. For a few predicted materials, we run G0W0+SOC and DFT+U calculations. We find that as we introduce many-body effects, only a few materials retain non-trivial band-topology, suggesting the importance of high-level DFT methods in predicting 2D topological materials. However, as an initial step, the automated spillage screening and Wannier-approach provide useful predictions for finding new topological materials and to narrow down candidates for experimental synthesis and characterization.