论文标题

$ \ mathbb {z}^d $的随机颜色的三个讲座

Three lectures on random proper colorings of $\mathbb{Z}^d$

论文作者

Peled, Ron, Spinka, Yinon

论文摘要

图形的适当$ q $颜色是对图的每个顶点的$ Q $颜色之一的分配,以使相邻的顶点对颜色有所不同。在整数晶格$ \ mathbb {z}^d $中,在所有适当的$ q $颜色中均匀地示例。获得的随机着色是否表现出任何大规模结构?它有快速的相关性衰减吗?我们讨论这些问题以及它们的答案取决于尺寸$ d $和颜色$ Q $的数量。这些问题是由统计物理学(抗铁磁材料,方冰),组合物(正确的着色,独立集)和随机Lipschitz在晶格上功能的研究来激励的。讨论介绍了一套多种工具,可用于此目的以及其他问题,包括空间混合,熵和耦合方法,吉布斯测量及其分类和精制轮廓分析。

A proper $q$-coloring of a graph is an assignment of one of $q$ colors to each vertex of the graph so that adjacent vertices are colored differently. Sample uniformly among all proper $q$-colorings of a large discrete cube in the integer lattice $\mathbb{Z}^d$. Does the random coloring obtained exhibit any large-scale structure? Does it have fast decay of correlations? We discuss these questions and the way their answers depend on the dimension $d$ and the number of colors $q$. The questions are motivated by statistical physics (anti-ferromagnetic materials, square ice), combinatorics (proper colorings, independent sets) and the study of random Lipschitz functions on a lattice. The discussion introduces a diverse set of tools, useful for this purpose and for other problems, including spatial mixing, entropy and coupling methods, Gibbs measures and their classification and refined contour analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源