论文标题
停车场:现实世界中的对象检测数据集
ParkingSticker: A Real-World Object Detection Dataset
论文作者
论文摘要
我们提出了一个新的且具有挑战性的对象检测数据集,ParkingSticker,该数据集比Pascal VOC(例如Pascal VOC)更接近行业问题中可用的数据类型。停车场包含1,871张来自安全相机录像的图像。目的是识别汽车上的停车贴纸,以接近安全摄像机面对的门。图像中的停车贴纸周围绘制边界盒。停车贴纸平均比其他流行对象检测数据集中的物体小得多。这使得停车场成为对象检测方法的具有挑战性的测试。该数据集也非常现实地表示在许多行业问题中可用的数据,在这些问题中,客户提出了一些视频帧,并要求解决一个非常困难的问题。提出了使用YOLOV2架构的各种对象检测管道的性能,并表明在停车场中识别停车标签是具有挑战性但可行的。我们认为,该数据集将挑战研究人员,以使用现实世界中的约束(例如非理想的摄像头定位和小的对象大小图像大小)来解决现实世界中的问题。
We present a new and challenging object detection dataset, ParkingSticker, which mimics the type of data available in industry problems more closely than popular existing datasets like PASCAL VOC. ParkingSticker contains 1,871 images that come from a security camera's video footage. The objective is to identify parking stickers on cars approaching a gate that the security camera faces. Bounding boxes are drawn around parking stickers in the images. The parking stickers are much smaller on average than the objects in other popular object detection datasets; this makes ParkingSticker a challenging test for object detection methods. This dataset also very realistically represents the data available in many industry problems where a customer presents a few video frames and asks for a solution to a very difficult problem. Performance of various object detection pipelines using a YOLOv2 architecture are presented and indicate that identifying the parking stickers in ParkingSticker is challenging yet feasible. We believe that this dataset will challenge researchers to solve a real-world problem with real-world constraints such as non-ideal camera positioning and small object-size-to-image-size ratios.