论文标题
一个忠实的分析有效的一个体波形模型,用于旋转一致,中等偏心的黑洞二进制
A faithful analytical effective one body waveform model for spin-aligned, moderately eccentric, coalescing black hole binaries
论文作者
论文摘要
我们提出了一种新的有效的体体(EOB)模型,用于偏心二元结合。该模型源于最先进的模型teobresums $ \ _ $ sm用于循环融合的黑洞二进制文件,该二进制是对辐射反应和波形中的明确构成偏心效应的修改。使用重力波损失作为基准的regge-wheeler-zerilli类型计算,我们发现沿轻度偏心轨道($ e \ sim 0.3 $)的辐射反应相当准确的($ \ sim 1 \%$)表达($ \ sim 0.3 $)是通过将当前的EOB,圆形圆形动量(新的循环效果)(新的)带来的(新的)循环效果(用于新的圆形动量)。轨道。对于波形多尔斯实现了类似的方法。然后,该模型由通常通过循环数值相对性(NR)模拟告知的通常合并调度部分完成。该模型通过模拟极端时空(SXS)协作计算的22个公开可用的NR模拟进行了验证,温和的偏心率,质量比在1到3之间,并达到相当大的无尺寸自旋值($ \ pm 0.7 $)。用高级LIGO噪声计算的最大最大EOB/NR不忠,最多是$ 3 \%$的订单。此处介绍的分析框架应被视为开发由偏心动力学驱动的高度信仰波形模板的有希望的起点,该模板的当前,甚至可能是未来的引力波检测器。
We present a new effective-one-body (EOB) model for eccentric binary coalescences. The model stems from the state-of-the-art model TEOBResumS$\_$SM for circularized coalescing black-hole binaries, that is modified to explicitly incorporate eccentricity effects both in the radiation reaction and in the waveform. Using Regge-Wheeler-Zerilli type calculations of the gravitational wave losses as benchmarks, we find that a rather accurate ($\sim 1\%$) expression for the radiation reaction along mildly eccentric orbits ($e \sim 0.3$) is given by dressing the current, EOB-resummed, circularized angular momentum flux, with a leading-order (Newtonian-like) prefactor valid along general orbits. An analogous approach is implemented for the waveform multipoles. The model is then completed by the usual merger-ringdown part informed by circularized numerical relativity (NR) simulations. The model is validated against the 22, publicly available, NR simulations calculated by the Simulating eXtreme Spacetime (SXS) collaboration, with mild eccentricities, mass ratios between 1 and 3 and up to rather large dimensionless spin values ($\pm 0.7$). The maximum maximum EOB/NR unfaithfulness, calculated with Advanced LIGO noise, is at most of order $3\%$. The analytical framework presented here should be seen as a promising starting point for developing highly-faithful waveform templates driven by eccentric dynamics for present, and possibly future, gravitational wave detectors.