论文标题

一种基于低率汉克尔基质的核磁共振光谱的自动参数降解方法

An auto-parameter denoising method for nuclear magnetic resonance spectroscopy based on low-rank Hankel matrix

论文作者

Qiu, Tianyu, Liao, Wenjing, Guo, Di, Liu, Dongbao, Wang, Xin, Cai, Jian-Feng, Qu, Xiaobo

论文摘要

核磁共振(NMR)光谱法建模为压缩指数信号之和,已成为各种情况下的必不可少的工具,例如结构和功能确定,化学分析和疾病诊断。但是,NMR光谱信号通常在实践中被高斯噪声损坏,从而在信号的顺序分析和量化中造成了困难。低级Hankel属性在DeNoising问题中起着重要作用,但是选择适当的参数仍然是一个问题。在这项工作中,我们探讨了基于高级矩阵的凸优化方法的正则化参数的效果,以折断高斯噪声损坏的指数信号。为设置正则化参数的指导提供了对加权Hankel矩阵光谱规范的准确估计。可以有效地计算结合,因为它仅取决于噪声的标准偏差和常数。在界限的帮助下,人们可以轻松获得自动设定的正则化参数,以产生有希望的剥落结果。我们对合成和现实的NMR光谱数据的实验表明,与典型的Cadzow和最新的QR分解方法相比,我们提出的方法的脱糖性表现出色,尤其是在低信噪比的比率方面。

Nuclear Magnetic Resonance (NMR) spectroscopy, which is modeled as the sum of damped exponential signals, has become an indispensable tool in various scenarios, such as the structure and function determination, chemical analysis, and disease diagnosis. NMR spectroscopy signals, however, are usually corrupted by Gaussian noise in practice, raising difficulties in sequential analysis and quantification of the signals. The low-rank Hankel property plays an important role in the denoising issue, but selecting an appropriate parameter still remains a problem. In this work, we explore the effect of the regularization parameter of a convex optimization denoising method based on low-rank Hankel matrices for exponential signals corrupted by Gaussian noise. An accurate estimate on the spectral norm of weighted Hankel matrices is provided as a guidance to set the regularization parameter. The bound can be efficiently calculated since it only depends on the standard deviation of the noise and a constant. Aided by the bound, one can easily obtain an auto-setting regularization parameter to produce promising denoised results. Our experiments on synthetic and realistic NMR spectroscopy data demonstrate a superior denoising performance of our proposed approach in comparison with the typical Cadzow and the state-of-the-art QR decomposition methods, especially in the low signal-to-noise ratio regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源