论文标题

具有随机块模型的两分网络中的社区检测

Community Detection in Bipartite Networks with Stochastic Blockmodels

论文作者

Yen, Tzu-Chi, Larremore, Daniel B.

论文摘要

在两分网络中,社区结构仅限于拆卸性,因为一种类型的节点是根据与另一种类型节点的共同连接模式分组的。这使随机块模型(SBM)是具有块结构的网络的高度灵活的生成模型,这是双方社区检测的直观选择。但是,SBM的典型配方不利用双方网络的特殊结构。在这里,我们介绍了SBM的贝叶斯非参数公式和一种相应的算法,以有效地在双方网络中找到社区,该网络既友好地选择社区的数量,又可以在两部分网络中找到社区。当数据嘈杂时,BISBM改善了一般SBM的社区检测结果,将模型分辨率限制提高了$ \ sqrt {2} $,并扩展了我们对与社区检测任务相关的复杂优化领域的理解。直接比较BISBM中先前分布的某些术语和相关的高分辨率层次结构SBM也揭示了社区检测问题的反直觉状态,该问题由较小和更稀疏的网络填充,在该网络中,非等级模型的表现优于其更灵活的对应物。

In bipartite networks, community structures are restricted to being disassortative, in that nodes of one type are grouped according to common patterns of connection with nodes of the other type. This makes the stochastic block model (SBM), a highly flexible generative model for networks with block structure, an intuitive choice for bipartite community detection. However, typical formulations of the SBM do not make use of the special structure of bipartite networks. Here we introduce a Bayesian nonparametric formulation of the SBM and a corresponding algorithm to efficiently find communities in bipartite networks which parsimoniously chooses the number of communities. The biSBM improves community detection results over general SBMs when data are noisy, improves the model resolution limit by a factor of $\sqrt{2}$, and expands our understanding of the complicated optimization landscape associated with community detection tasks. A direct comparison of certain terms of the prior distributions in the biSBM and a related high-resolution hierarchical SBM also reveals a counterintuitive regime of community detection problems, populated by smaller and sparser networks, where nonhierarchical models outperform their more flexible counterpart.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源