论文标题
离散的伴随方法:离散序列功能的有效衍生物
The Discrete Adjoint Method: Efficient Derivatives for Functions of Discrete Sequences
论文作者
论文摘要
基于梯度的技术在定量领域中变得越来越重要,特别是在统计和计算机科学中。但是,这些技术的实用性最终取决于我们可以评估应用程序中出现的复杂数学函数的衍生物。在本文中,我们引入了一种离散的伴随方法,该方法有效地评估了离散序列功能的导数。
Gradient-based techniques are becoming increasingly critical in quantitative fields, notably in statistics and computer science. The utility of these techniques, however, ultimately depends on how efficiently we can evaluate the derivatives of the complex mathematical functions that arise in applications. In this paper we introduce a discrete adjoint method that efficiently evaluates derivatives for functions of discrete sequences.