论文标题

可逆的Finsler 2-Spheres上的封闭的大地测量学

Closed geodesics on reversible Finsler 2-spheres

论文作者

De Philippis, Guido, Marini, Michele, Mazzucchelli, Marco, Suhr, Stefan

论文摘要

我们将两种封闭的Riemannian 2-Spheres的封闭地球学定理扩展到了更大的可逆Finsler 2范围的较大类别:Lusternik-Schnirelmann的定理,宣称存在三个简单的封闭的大地测量学,以及Bangert-Franks-Franks-Hhingston的理论上的无限封闭的Geodesicics,这是许多封闭的Geodesicics。为了证明第一个定理,我们采用了Grayson曲线缩短流量的概括。

We extend two celebrated theorems on closed geodesics of Riemannian 2-spheres to the larger class of reversible Finsler 2-spheres: Lusternik-Schnirelmann's theorem asserting the existence of three simple closed geodesics, and Bangert-Franks-Hingston's theorem asserting the existence of infinitely many closed geodesics. In order to prove the first theorem, we employ the generalization of Grayson's curve shortening flow developed by Angenent-Oaks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源