论文标题
遗传算法优化基于NOMA的卫星网络中的支持向量机,CSI不完美
Genetic Algorithm Optimized Support Vector Machine in NOMA-Based Satellite Networks with Imperfect CSI
论文作者
论文摘要
借助功率域非正交多访问(NOMA)方案,卫星网络可以在有限的时间/频谱资源块中同时为多个用户提供服务。但是,通道估计错误的存在不可避免地会降低对用户通道状态信息(CSI)精度的判断,从而影响用户配对处理并抑制NOMA方案的优势。受到机器学习(ML)算法的优势的启发,我们提出了一种改进的支持向量机(SVM)方案,以降低不适当的用户配对风险,并提高基于NOMA的卫星网络与不完美CSI的性能。特别是,采用遗传算法(GA)来优化SVM的正则化和内核参数,从而有效提高了所提出的方案的分类精度。提供了模拟以证明所提出的方法的性能要比随机用户削皮策略更好,尤其是在大量用户的情况下。
With the help of a power-domain non-orthogonal multiple access (NOMA) scheme, satellite networks can simultaneously serve multiple users within limited time/spectrum resource block. However, the existence of channel estimation errors inevitably degrade the judgment on users' channel state information (CSI) accuracy, thus affecting the user pairing processing and suppressing the superiority of the NOMA scheme. Inspired by the advantages of machine learning (ML) algorithms, we propose an improved support vector machine (SVM) scheme to reduce the inappropriate user pairing risks and enhance the performance of NOMA based satellite networks with imperfect CSI. Particularly, a genetic algorithm (GA) is employed to optimize the regularization and kernel parameters of the SVM, which effectively improves the classification accuracy of the proposed scheme. Simulations are provided to demonstrate that the performance of the proposed method is better than that with random user paring strategy, especially in the scenario with a large number of users.