论文标题

完整双工时间关键时间无线电动通信网络的最小长度安排

Minimum Length Scheduling for Full Duplex Time-Critical Wireless Powered Communication Networks

论文作者

Iqbal, Muhammad Shahid, Sadi, Yalcin, Coleri, Sinem

论文摘要

射频(RF)能量收获是由于对能量传递,远场区域,小型和低成本电路的全面控制而获得时间关键无线电动通信网络的永久寿命的关键。在本文中,我们提出了一个新颖的最小长度调度问题,以确定最佳的功率控制,时间分配和传输时间表,但要在全duplex无线电动通信网络中受数据,能量因果关系和最大发射功率约束。我们首先将问题提出为混合整数非线性编程问题,并猜想该问题是NP-HARD。作为解决方案策略,我们证明了功率控制和时间分配以及调度问题可以在最佳解决方案中分别解决。对于功率控制和时间分配问题,我们通过使用Karush-Kuhn-Tucker条件来得出最佳解决方案。对于安排,我们引入了惩罚功能,允许重新制定作为总罚款最小化问题。根据惩罚函数的特征衍生最佳条件后,我们提出了两种多项式启发式算法和采用智能修剪技术的精确算法的降低。通过广泛的模拟,我们说明所提出的启发式方案的表现优于先前提出的方案,以确定用户的预定传输顺序,并实现近乎最佳的解决方案。

Radio frequency (RF) energy harvesting is key in attaining perpetual lifetime for time-critical wireless powered communication networks due to full control on energy transfer, far field region, small and low-cost circuitry. In this paper, we propose a novel minimum length scheduling problem to determine the optimal power control, time allocation and transmission schedule subject to data, energy causality and maximum transmit power constraints in a full-duplex wireless powered communication network. We first formulate the problem as a mixed integer non-linear programming problem and conjecture that the problem is NP-hard. As a solution strategy, we demonstrate that the power control and time allocation, and scheduling problems can be solved separately in the optimal solution. For the power control and time allocation problem, we derive the optimal solution by using Karush-Kuhn-Tucker conditions. For the scheduling, we introduce a penalty function allowing reformulation as a sum penalty minimization problem. Upon derivation of the optimality conditions based on the characteristics of the penalty function, we propose two polynomial-time heuristic algorithms and a reduced-complexity exact algorithm employing smart pruning techniques. Via extensive simulations, we illustrate that the proposed heuristic schemes outperform the previously proposed schemes for predetermined transmission order of users and achieve close-to-optimal solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源