论文标题
在de Sitter 3空间中的定时纠正曲线的一些表征
Some Characterizations of Timelike Rectifying Curves in De Sitter 3-Space
论文作者
论文摘要
De Sitter空间是一种非浮力Lorentzian空间形式,具有正恒定曲率,在相对论中起着重要作用。在本文中,我们将定位曲线的曲线曲线和定时的圆锥形表面定义为lorentzian的观点。此外,我们给出了一些很好的特征和定时纠正曲线相对于de Sitter 3空间中的曲线 - 曲面框架的结果,这是Minkowski 4空间中的三维伪单球。
De Sitter space is a non-flat Lorentzian space form with positive constant curvature which plays an important role in the theory of relativity. In this paper, we define the notions of timelike rectifying curve and timelike conical surface in De Sitter 3-space as Lorentzian viewpoint. Moreover, we give some nice characterizations and results of a timelike rectifying curves with respect to curve-hypersurface frame in De Sitter 3-space which is a three dimensional pseudo-sphere in Minkowski 4-space.