论文标题

在简单的立方晶格上的3D定向动物的组合学

Combinatorics of 3D directed animals on a simple cubic lattice

论文作者

Nechaev, Sergei, Tamm, Michael

论文摘要

我们根据本地无网群的二维扩展提供组合论点,使我们能够计算分区功能的$λ$的增长率$ z_n = n^θλ^n $ $ n $ n $ particle的指向动物($ n \ gg 1 $)的增长率($ n $ n $ n $ n $ n^θλ^n $)在简单的立方体lattice lattice lattice lattice lattice lattice lattice lattice lattice specs中的三二维和三二维镜。建立晶格动物的特定配置与2D投影本地的无本地半群中的一类单词之间的两者之间的两者,我们发现我们发现$ \lnλ= \ lim_ {n \ to \ infty} \ ln} \ ln z_n / n $,带有$λ= 2(\ sqrt = 2(\ sqrt {2}+1}+1)。

We provide combinatorial arguments based on a two-dimensional extension of a locally-free semigroup allowing us to compute the growth rate, $Λ$, of the partition function $Z_N=N^θΛ^N$ of the $N$-particle directed animals ($N\gg 1$) on a simple cubic lattice in a three-dimensional space. Establishing the bijection between the particular configuration of the lattice animal and a class of equivalences of words in the 2D projective locally-free semigroup, we find we find $\ln Λ= \lim_{N\to\infty} \ln Z_N / N$ with $Λ= 2(\sqrt{2}+1) \approx 4.8284$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源