论文标题
三元约旦代数的广义推导,近形和质心
Generalized derivations, quasiderivations and centroids of ternary Jordan algebras
论文作者
论文摘要
在本文中,我们首先为三元约旦代数提供了一些构造。接下来,我们研究三元约旦代数的广义推导,近形和质心之间的关系。我们表明,对于三元约旦代数,广义派生代数是甲状化代数和质心的总和,其中质心是广义推导代数的理想。我们还证明,可以将Quasiderivations嵌入更大的三元Jordan代数中。特别是,在所有线性转换的情况下,我们还确定了三元约旦代数的维度。还显示了一些关于三元约旦代数的质心的特性。
In this paper, we give some construction about ternary Jordan algebras at first. Next we study relationships between generalized derivations, quasiderivations and centroids of ternary Jordan algebras. We show that for ternary Jordan algebras, generalized derivation algebras are the sum of quasiderivation algebras and centroids where centroids are ideals of generalized derivation algebras. We also prove that quasiderivations can be embedded into larger ternary Jordan algebras as derivations. In particular, we also determine dimensions of ternary Jordan algebras in the case of all linear transformations are quasiderivations. Some properties about centroids of ternary Jordan algebras are also displayed.