论文标题
受限的贝叶斯非参数回归用于晶界能量预测
Constrained Bayesian Nonparametric Regression for Grain Boundary Energy Predictions
论文作者
论文摘要
晶界(GB)能量是影响晶界形式的基本特性,并在揭示多晶材料的行为方面起着重要作用。有了更好地了解晶粒边界能量分布(GBED),我们可以生产更耐用和有效的材料,从而进一步提高生产率并降低损失。缺乏强大的GB结构特性关系仍然是开发多晶材料行为的真正自下而上模型的最大障碍之一。由于与界面结构及其驻留的巨大五维配置空间相关的固有复杂性,因此进度很慢。从统计的角度来看,估算GBED是有挑战性的,因为在晶界能量上没有直接测量。我们只有以无法识别的均质线性方程组的形式的间接信息。在本文中,我们提出了一个新的统计模型,以确定从多晶材料的微观结构中的GBED。我们将基于样条的回归施加了限制,以成功恢复GB能量表面。哈密顿蒙特卡洛和吉布斯采样用于计算和模型拟合。与常规方法相比,我们的方法不仅提供了更准确的预测,而且提供了预测不确定性。
Grain boundary (GB) energy is a fundamental property that affects the form of grain boundary and plays an important role to unveil the behavior of polycrystalline materials. With a better understanding of grain boundary energy distribution (GBED), we can produce more durable and efficient materials that will further improve productivity and reduce loss. The lack of robust GB structure-property relationships still remains one of the biggest obstacles towards developing true bottom-up models for the behavior of polycrystalline materials. Progress has been slow because of the inherent complexity associated with the structure of interfaces and the vast five-dimensional configurational space in which they reside. Estimating the GBED is challenging from a statistical perspective because there are not direct measurements on the grain boundary energy. We only have indirect information in the form of an unidentifiable homogeneous set of linear equations. In this paper, we propose a new statistical model to determine the GBED from the microstructures of polycrystalline materials. We apply spline-based regression with constraints to successfully recover the GB energy surface. Hamiltonian Monte Carlo and Gibbs sampling are used for computation and model fitting. Compared with conventional methods, our method not only gives more accurate predictions but also provides prediction uncertainties.