论文标题

$ \ MATHBB K $ - 有限对称域上操作员的均匀元组

$\mathbb K$-homogeneous tuple of operators on bounded symmetric domains

论文作者

Ghara, Soumitra, Kumar, Surjit, Pramanick, Paramita

论文摘要

令$ω$为$ \ Mathbb c^d。$ in Cark $ r $的不可约定的对称域,让$ \ Mathbb k $是Biholomorphic Automormorphic Automormorphic Automormorphic Automormorphic Automormorphic Automormorphic Automormormorphic Automormormorphic Automormormorphic Automormormorphic Automormormorphism of tomain $ω$的标识组件$ G $的最大紧凑型亚组。由线性转换组成的组$ \ mathbb k $自然作用于通勤有限的线性运算符的任何$ d $ -tuple $ \ boldsymbol t =(t_1,\ ldots,t_d)$。如果此操作的轨道模式统一等效是单身人士,那么我们说$ \ boldsymbol t $是$ \ mathbb {k} $ - 同质性。在本文中,我们获得了所有$ \ mathbb {k} $ - 同质$ d $ -tuple $ \ boldsymbol {t} $作为乘务的运营商$ z_1,z_1,z_d $,z_d $ z_d $ od od holomorphic punction $ω$之间。使用此模型,我们获得了(i)有限性的标准,(ii)Cowen-Douglas类(III)单一等价和相似性的成员资格。特别是,我们表明,加权伯格曼空间上乘以坐标函数的$ d $ tuple的伴随在Cowen-Douglas类$ b_1(ω)$中。对于一个有界的对称域$ 2 $的$ω$,给出了操作员$ \ sum_ {i = 1}^d t_i^*t_i $的明确描述。通常,基于此公式,我们做出了一个猜想,给出了该操作员的形式。

Let $Ω$ be an irreducible bounded symmetric domain of rank $r$ in $\mathbb C^d.$ Let $\mathbb K$ be the maximal compact subgroup of the identity component $G$ of the biholomorphic automorphism group of the domain $Ω$. The group $\mathbb K$ consisting of linear transformations acts naturally on any $d$-tuple $\boldsymbol T=(T_1,\ldots, T_d)$ of commuting bounded linear operators. If the orbit of this action modulo unitary equivalence is a singleton, then we say that $\boldsymbol T$ is $\mathbb{K}$-homogeneous. In this paper, we obtain a model for all $\mathbb{K}$-homogeneous $d$-tuple $\boldsymbol{T}$ as the operators of multiplication by the coordinate functions $z_1,\ldots ,z_d$ on a reproducing kernel Hilbert space of holomorphic functions defined on $Ω$. Using this model we obtain a criterion for (i) boundedness, (ii) membership in the Cowen-Douglas class (iii) unitary equivalence and similarity of these $d$-tuples. In particular, we show that the adjoint of the $d$-tuple of multiplication by the coordinate functions on the weighted Bergman spaces are in the Cowen-Douglas class $B_1(Ω)$. For a bounded symmetric domain $Ω$ of rank $2$, an explicit description of the operator $\sum_{i=1}^d T_i^*T_i$ is given. In general, based on this formula, we make a conjecture giving the form of this operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源