论文标题
关于$ f(g,t)$项在结构标量中的作用
On the Role of $f(G,T)$ Terms in Structure Scalars
论文作者
论文摘要
这项工作致力于探索$ f(g,t)$术语对结构标量研究的影响及其在Raychaudhuri,Shear和Weyl标量方程式中的影响。为此,我们假设非静态球形对称几何形状与剪切粘性局部各向异性耗散物质含量相结合。我们已经建立了misner-Sharp质量,Weyl标量,物质和结构变量之间的关系。我们还制定了$ f(g,t)$结构标量后,在riemann曲率张量的正交分解后。还研究了这些标量函数在相对论辐射球的建模中的影响。对于恒定和变化的曲率校正,还探索了不均匀性出现的因素。我们推断出$ f(g,t)$结构标量可能会导致一个有效的工具来研究Penrose-Hawking Singularity定理和Newman-Penrose形式主义。
This work is devoted to explore the effects of $f(G,T)$ terms on the study of structure scalars and their influences in the formulations of the Raychaudhuri, shear and Weyl scalar equations. For this purpose, we have assumed non-static spherically symmetric geometry coupled with shearing viscous locally anisotropic dissipative matter content. We have developed relations among the Misner-Sharp mass, Weyl scalar, matter and structure variables. We have also formulated set of $f(G,T)$ structure scalars after orthogonally breaking down of the Riemann curvature tensor. The influences of these scalar functions in the modeling of relativistic radiating spheres are also studied. The factor involved in the emergence of inhomogeneities is also explored for the constant and varying modified curvature corrections. We inferred that $f(G,T)$ structure scalars could lead provide an effective tool to study Penrose-Hawking singularity theorems and Newman-Penrose formalism.