论文标题

线性时间周期性抛物线运算符的主要特征值的渐近学i:大对流

Asymptotics of the principal eigenvalue for a linear time-periodic parabolic operator I: Large advection

论文作者

Liu, Shuang, Lou, Yuan, Peng, Rui, Zhou, Maolin

论文摘要

我们研究了对流对线性时周期抛物线算子的主要特征值的影响,neumann边界条件为零。主要特征值的各种渐近行为,当对流系数接近无限时,在异质环境中建立了空间或时间堕落性。我们的发现部分扩展了Chen-Lou的现有结果[2008 Indiana Univ。数学。 J.]和Peng-Zhou [2018 Indiana Univ。数学。 J.]对于椭圆运营商和彭佐(Peng-Zhao)[2015 Calc。 var。抛物线运营商的部分差异。

We investigate the effects of advection on the principal eigenvalues of linear time-periodic parabolic operators with zero Neumann boundary conditions. Various asymptotic behaviors of the principal eigenvalues, when advection coefficient approaches infinity, are established in heterogeneous environments, where spatial or temporal degeneracy could occur in the advection term. Our findings partially extend the existing results in Chen-Lou [2008 Indiana Univ. Math. J.] and Peng-Zhou [2018 Indiana Univ. Math. J.] for elliptic operators and those in Peng-Zhao [2015 Calc. Var. Partial Diff.] for parabolic operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源