论文标题
关于均匀ROE代数的Kuiper类型定理
On Kuiper type theorems for uniform Roe algebras
论文作者
论文摘要
概括有限直径的无限离散度度空间的情况,我们说,如果其均匀的ROE代数的可逆元素组是规范的,则离散的度量空间$(x,d)$是Kuiper空间。获得$(x,d)$的各种足够条件,或者不为Kuiper空间。
Generalizing the case of an infinite discrete metric space of finite diameter, we say that a discrete metric space $(X,d)$ is a Kuiper space, if the group of invertible elements of its uniform Roe algebra is norm-contractible. Various sufficient conditions on $(X,d)$ to be or not to be a Kuiper space are obtained.