论文标题

磁化的湍流可以设置恒星的质量尺度吗?

Can magnetized turbulence set the mass scale of stars?

论文作者

Guszejnov, David, Grudić, Michael Y., Hopkins, Philip F., Offner, Stella S. R., Faucher-Giguère, Claude-André

论文摘要

理解自我磨碎,等温,磁性气体的演变对于恒星形成至关重要,因为已经假定这些物理过程可以设置初始质量函数(IMF)。我们提出了使用Gizmo代码的等温磁流体动力学(MHD)模拟的套件,该模拟解决了巨型分子云(GMC)中单个恒星的形成,涵盖了在观察到的GMC中发现的一系列MACH数。与过去的工作一样,平均值和中位数恒星质量对数值分辨率敏感,因为它们对低质量恒星敏感,这些恒星占整体恒星质量的消失。一旦湍流碎片良好,{\ em Mass-Weighted}中值恒星质量$ m_ \ mathrm {50} $就对解决方案不敏感。在不施加类似拉尔森的缩放法律的情况下,我们的模拟找到$ m_ \ mathrm {50} \ propto m_ \ mathrm {0} \ mathcal {m}^{ - 3}α__\ mathrm {turb} \ mathrm {sfe} $ for gmmass $ for gmm for $ \ mathcal {m} $,病毒参数$α_\ mathrm {turb} $和星形构造效率$ \ mathrm {sfe} = m_ \ mathrm {\ star}/m_ \ mathrm {0} $。这与Ramses,Orion2和SPHNG代码的先前IMF结果非常吻合。尽管$ M_ \ Mathrm {50} $对云尺度下的磁场强度没有显着依赖性,但MHD对于防止碎片化级联反应是必要的,从而导致非质体恒星质量。对于类似于我们银河系中的星形GMC的初始条件和SFE,我们预测$ m_ \ mathrm {50} $为$> 20 m _ {\ odot} $,这是比观察到的($ \ sim 2 m_ \ odot $)的数量级,以及多余的棕色dwarfs。此外,$ m_ \ mathrm {50} $对初始云属性敏感,并且在给定的云中随着时间的推移会迅速发展,预测IMF的变化要大得多。我们得出的结论是,超出MHD湍流和重力的物理学是IMF的必要成分。

Understanding the evolution of self-gravitating, isothermal, magnetized gas is crucial for star formation, as these physical processes have been postulated to set the initial mass function (IMF). We present a suite of isothermal magnetohydrodynamic (MHD) simulations using the GIZMO code, that resolve the formation of individual stars in giant molecular clouds (GMCs), spanning a range of Mach numbers found in observed GMCs. As in past works, the mean and median stellar masses are sensitive to numerical resolution, because they are sensitive to low-mass stars that contribute a vanishing fraction of the overall stellar mass. The {\em mass-weighted} median stellar mass $M_\mathrm{50}$ becomes insensitive to resolution once turbulent fragmentation is well-resolved. Without imposing Larson-like scaling laws, our simulations find $M_\mathrm{50} \propto M_\mathrm{0} \mathcal{M}^{-3} α_\mathrm{turb} \mathrm{SFE}^{1/3}$ for GMC mass $M_\mathrm{0}$, sonic Mach number $\mathcal{M}$, virial parameter $α_\mathrm{turb}$, and star formation efficiency $\mathrm{SFE}=M_\mathrm{\star}/M_\mathrm{0}$. This fit agrees well with previous IMF results from the RAMSES, ORION2, and SphNG codes. Although $M_\mathrm{50}$ has no significant dependence on the magnetic field strength at the cloud scale, MHD is necessary to prevent a fragmentation cascade that results in non-convergent stellar masses. For initial conditions and SFE similar to star-forming GMCs in our Galaxy, we predict $M_\mathrm{50}$ to be $>20 M_{\odot}$, an order of magnitude larger than observed ($\sim 2 M_\odot$), together with an excess of brown dwarfs. Moreover, $M_\mathrm{50}$ is sensitive to initial cloud properties and evolves strongly in time within a given cloud, predicting much larger IMF variations than are observationally allowed. We conclude that physics beyond MHD turbulence and gravity are necessary ingredients for the IMF.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源