论文标题

理解计算精神病学

Making Sense of Computational Psychiatry

论文作者

Mujica-Parodi, LR, Strey, HH

论文摘要

在精神病学中,我们经常谈论建造“模型”。在这里,我们试图理解这样的主张可能意味着什么,首先是最基本的问题:“什么是(不是)模型?”。然后,我们从具体的可测量意义上讨论模型有用的含义。在这样做时,我们首先确定计算模型可以在准确性和力量的背景下提供的附加值。然后,我们介绍了标准统计方法的局限性,并为如何通过将统计模型重新构图作为动力学系统来扩展分析的解释力提供了建议。最后,我们解决了模型构建的问题,提出了计算精神病学可以逃避经典假设驱动的研究施加的认知偏见的潜力的方法,从而利用了神经成像数据中包含的深层系统级信息,以提高我们对精神病神经科学的理解。

In psychiatry, we often speak of constructing "models." Here we try to make sense of what such a claim might mean, starting with the most fundamental question: "What is (and isn't) a model?". We then discuss, in a concrete measurable sense, what it means for a model to be useful. In so doing, we first identify the added value that a computational model can provide, in the context of accuracy and power. We then present the limitations of standard statistical methods and provide suggestions for how we can expand the explanatory power of our analyses by reconceptualizing statistical models as dynamical systems. Finally, we address the problem of model building, suggesting ways in which computational psychiatry can escape the potential for cognitive biases imposed by classical hypothesis-driven research, exploiting deep systems-level information contained within neuroimaging data to advance our understanding of psychiatric neuroscience.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源