论文标题
贝林森 - 伯恩斯坦本地化的四个例子
Four examples of Beilinson-Bernstein localization
论文作者
论文摘要
令$ \ mathfrak {g} $成为一个复杂的半imple lie代数。 Beilinson-Bernstein定位定理确立了$ \ Mathfrak {G} $类别的等效性 - 固定无穷小特征的模块和一类模块,而不是在$ \ Mathfrak {g} $的Flag Flag品种上扭曲的差异操作员。在此说明论文中,当$ \ mathfrak {g} = \ mathfrak {sl}(2,\ mathbb {c})$时,我们给出了该定理的四个详细示例。具体而言,我们描述了与有限维的$ \ Mathfrak {g} $ - 模块,Verma模块,Whittaker模块,$ sl(2,\ Mathbb {r})$ sl $ sl(2,2,2,2,2,2,2,2,2,MATHBB {r})$ sl(2,MATHALS)$(2,2,2,2,2,2,Math)代表$ sl(2,rathbb {r})$ sl(2,2,2,2,2,2)
Let $\mathfrak{g}$ be a complex semisimple Lie algebra. The Beilinson-Bernstein localization theorem establishes an equivalence of the category of $\mathfrak{g}$-modules of a fixed infinitesimal character and a category of modules over a twisted sheaf of differential operators on the flag variety of $\mathfrak{g}$. In this expository paper, we give four detailed examples of this theorem when $\mathfrak{g}=\mathfrak{sl}(2,\mathbb{C})$. Specifically, we describe the $\mathcal{D}$-modules associated to finite-dimensional irreducible $\mathfrak{g}$-modules, Verma modules, Whittaker modules, discrete series representations of $SL(2,\mathbb{R})$, and principal series representations of $SL(2,\mathbb{R})$.