论文标题

活跃的布朗颗粒:映射到平衡聚合物和矩的精确计算

Active Brownian particles: mapping to equilibrium polymers and exact computation of moments

论文作者

Shee, Amir, Dhar, Abhishek, Chaudhuri, Debasish

论文摘要

众所周知,布朗运动的路径概率对应于柔性高斯聚合物的平衡构型概率,而活性布朗运动的聚合物则对应于无限制的半辅助聚合物。在这里,我们研究了平衡聚合物的特性,该特性对应于布朗尼和活性噪声同时作用的颗粒轨迹。通过此映射,我们可以在聚合物的机械性能中看到有趣的跨界,并且轮廓长度变化。聚合物的端到端分布表现出短长度的高斯行为,这会变为中间长度的半融合细丝的形式,最终返回到高斯形式的长度长度长度。通过执行Active Brownian粒子的fokker-Planck方程的拉普拉斯变换,我们讨论了一种直接的方法,以在任意维度中为相关动力学变量的所有矩来得出精确表达式。这些通过数值模拟进行了验证,用于描述有趣的定性特征,例如,动态跨界。最后,我们讨论了ABP位置的峰度,我们可以准确地计算出ABP的位置,并表明它可用于区分活性的布朗颗粒和活跃的Ornstein-Uhlenbeck过程。

It is well known that path probabilities of Brownian motion correspond to the equilibrium configurational probabilities of flexible Gaussian polymers, while those of active Brownian motion correspond to in-extensible semiflexible polymers. Here we investigate the properties of the equilibrium polymer that corresponds to the trajectories of particles acted on simultaneously by both Brownian as well as active noise. Through this mapping we can see interesting crossovers in mechanical properties of the polymer with changing contour length. The polymer end-to-end distribution exhibits Gaussian behaviour for short lengths, which changes to the form of semiflexible filaments at intermediate lengths, to finally go back to a Gaussian form for long contour lengths. By performing a Laplace transform of the governing Fokker-Planck equation of the active Brownian particle, we discuss a direct method to derive exact expressions for all the moments of the relevant dynamical variables, in arbitrary dimensions. These are verified via numerical simulations and used to describe interesting qualitative features such as, for example, dynamical crossovers. Finally we discuss the kurtosis of the ABP's position which we compute exactly and show that it can be used to differentiate between active Brownian particles and active Ornstein-Uhlenbeck process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源