论文标题
具有三个字符的理性CFT:准字符方法
Rational CFT With Three Characters: The Quasi-Character Approach
论文作者
论文摘要
准字符是具有积分但不一定为正Q扩展的矢量值模块化函数。使用模块化微分方程,在Arxiv:1810.09472中为两个字符提供了完整的分类。这些反过来又产生了所有可能的可允许的字符,即任意的wronskian索引。在这里,我们启动了三个特定案例的研究。我们猜想了几个无限的准字符家族,并在示例中表明,它们的线性组合是具有任意较大的Wronskian指数的可允许的字符。该结构与两个情况下完全不同,而新颖的arxiv构造:1602.01022在发现适当的家族中起着关键作用。甚至使用单型晶格,我们构建了一些与新的可允许字符相对应的显式三个字符CFT。
Quasi-characters are vector-valued modular functions having an integral, but not necessarily positive, q-expansion. Using modular differential equations, a complete classification has been provided in arXiv:1810.09472 for the case of two characters. These in turn generate all possible admissible characters, of arbitrary Wronskian index, in order two. Here we initiate a study of the three-character case. We conjecture several infinite families of quasi-characters and show in examples that their linear combinations an generate admissible characters with arbitrarily large Wronskian index. The structure is completely different from the order two case, and the novel coset construction of arXiv:1602.01022 plays a key role in discovering the appropriate families. Using even unimodular lattices, we construct some explicit three-character CFT corresponding to the new admissible characters.