论文标题
非铁量子系统的时间依赖性
Time-dependence in non-Hermitian quantum systems
论文作者
论文摘要
我们提出了一个连贯且一致的框架,以实现非铁量子力学的明确时间依赖性。在过去的二十年中,非热量子力学的面积一直在迅速发展。这是由$ \ Mathcal {pt} $ - 对称的非热式系统表现出真实的能量特征值和单一时间演变的事实所驱动的。从历史上看,将时间引入非热量量子力学的世界一直是一个概念上难以解决的问题,因为它要求哈密顿人变得无法观察。我们通过引入新的可观察能量操作员来解决这个问题,并解释为什么在这种情况下其煽动是必要自然的进展。第一次引入时间使我们能够理解$ \ Mathcal {pt} $ - 对称性自发折断的参数制度。通常,在时间无关的设置中,能量特征值变得复杂,并且波函数渐近无限。我们证明,在时间依赖的设置中,可以修复这种破碎的对称性,并在自发损坏的$ \ Mathcal {pt} $制度上进行分析。我们提供了许多在各种不同系统上进行修补的示例,从$ 2 \ times2 $矩阵模型开始,并扩展到具有无限希尔伯特空间的更高维矩阵模型和耦合的谐波振荡系统。此外,我们使用该框架对时间依赖性的准解决模型进行分析。我们介绍了本文中熵的“永生”。通常,对于与环境结合的纠缠量子系统,熵迅速衰减至零。但是,在自发损坏的制度中,我们发现熵渐近地衰减到非零值。我们为Darboux和Darboux/Crum转换创建了一个优雅的框架,用于时间依赖于时间依赖的非热汉密尔顿人。
We present a coherent and consistent framework for explicit time-dependence in non-Hermitian quantum mechanics. The area of non-Hermitian quantum mechanics has been growing rapidly over the past twenty years. This has been driven by the fact that $\mathcal{PT}$-symmetric non-Hermitian systems exhibit real energy eigenvalues and unitary time evolution. Historically, the introduction of time into the world of non-Hermitian quantum mechanics has been a conceptually difficult problem to address, as it requires the Hamiltonian to become unobservable. We solve this issue with the introduction of a new observable energy operator and explain why its instigation is a necessary and natural progression in this setting. For the first time, the introduction of time has allowed us to make sense of the parameter regime in which the $\mathcal{PT}$-symmetry is spontaneously broken. Ordinarily, in the time-independent setting, the energy eigenvalues become complex and the wave functions are asymptotically unbounded. We demonstrate that in the time-dependent setting this broken symmetry can be mended and analysis on the spontaneously broken $\mathcal{PT}$ regime is indeed possible. We provide many examples of this mending on a wide range of different systems, beginning with a $2\times2$ matrix model and extending to higher dimensional matrix models and coupled harmonic oscillator systems with infinite Hilbert space. Furthermore, we use the framework to perform analysis on time-dependent quasi-exactly solvable models. We present the "eternal life" of entropy in this thesis. Ordinarily, for entangled quantum systems coupled to the environments, the entropy decays rapidly to zero. However, in the spontaneously broken regime, we find the entropy decays asymptotically to a non-zero value. We create an elegant framework for Darboux and Darboux/Crum transformations for time-dependent non-Hermitian Hamiltonians.