论文标题
原始磁盘通过非旋转,非轴对称崩溃的云形成:模型和与观测值的比较
Protostellar disk formation by a non-rotating, non-axisymmetric collapsing cloud: model and comparison with observations
论文作者
论文摘要
形成行星的磁盘是基本的物体,被认为是从大规模旋转遗传的,通过在Prestellar致密芯塌陷期间的角动量的保护。我们研究了原始磁盘由一动不动的密度核心形成的可能性,该核心包含非轴对称密度波动。因此,旋转是通过塌陷的不对称性在本地产生的。我们从分析的角度研究了致密核的非轴对称崩溃中角动量的演变。为了测试该理论,我们使用适应性网状细胞进行了三维模拟对塌陷的prestellar密度核心的模拟。我们从非轴心对称的情况开始,考虑到具有随机密度扰动的致密核,均跟随湍流光谱。我们分析了将其包含的角动量与我们的分析开发期望的角度动量进行比较的新兴磁盘。我们研究了模拟中不同尺度的速度梯度,就像观察结果一样。我们表明,由于惯性力,恒星物体框架中的角动量不能保守。我们对这种非轴对称崩溃的模拟迅速在核心的小尺度上产生积聚盘。对模拟核心中不同尺度的运动学的分析揭示了振幅的投影速度梯度,类似于在Protostellar核心中观察到的幅度,并且在比较小尺度时,这些方向有所不同,有时甚至在比较时逆转。这些复杂的运动学模式出现在最近的观察结果中,并且可能是从大尺度继承旋转的模型的歧视特征。与最初的固体旋转相比,我们来自没有初始旋转的模拟结果与这些最近的观察结果更一致[删节]
Planet-forming disks are fundamental objects thought to be inherited from large scale rotation, through the conservation of angular momentum during the collapse of a prestellar dense core. We investigate the possibility for a protostellar disk to be formed from a motionless dense core which contains non-axisymmetric density fluctuations. The rotation is thus generated locally by the asymmetry of the collapse. We study the evolution of the angular momentum in a non-axisymmetric collapse of a dense core from an analytical point of view. To test the theory, we perform three-dimensional simulations of a collapsing prestellar dense core using adaptative mesh refinement. We start from a non-axisymmetrical situation, considering a dense core with random density perturbations that follow a turbulence spectrum. We analyse the emerging disk comparing the angular momentum it contains with the one expected from our analytic development. We study the velocity gradients at different scales in the simulation as it is done with observations. We show that the angular momentum in the frame of a stellar object which is not located at the center of mass of the core is not conserved, due to inertial forces. Our simulations of such non-axisymmetrical collapse quickly produce accretion disks at the small scales in the core. The analysis of the kinematics at different scales in the simulated core reveals projected velocity gradients of amplitudes similar to the ones observed in protostellar cores, and which directions vary, sometimes even reversing when small and large scales are compared. These complex kinematics patterns appear in recent observations, and could be a discriminating feature with models where rotation is inherited from large scales. Our results from simulations without initial rotation are more consistent with these recent observations than when solid-body rotation is initially [abridged]