论文标题
关于字母对高皮块中哈密顿路径的猜想
On Alphatrion's Conjecture about Hamiltonian paths in hypercubes
论文作者
论文摘要
字母猜想是,可以标记$ n $维的超同类数据库,上面有明显的积极整数,以至于每个哈密顿路径$ a_1,\ dots,a_ {2^n},$我们拥有$ a_i + a_i + a_i + a_ + a_ + a_ + a_ + 1} $ prime的$。可以用独特的正整数标记,以便当e $中的所有$ e \ in e $的边缘总和是当$ g $是双方时的素数。
Alphatrion conjectured that it is possible to label the vertices of an $n$-dimensional hypercube with distinct positive integers such that for every Hamiltonian path $a_1, \dots, a_{2^n},$ we have $a_i + a_{i+1}$ prime for all $i.$ We prove the conjecture by proving the more general result that a graph $G = (V, E)$ can be labeled with distinct positive integers such that the edge sum for all $e \in E$ is prime if and only if $G$ is bipartite.