论文标题

跨语言的无监督预告片良好

Unsupervised pretraining transfers well across languages

论文作者

Rivière, Morgane, Joulin, Armand, Mazaré, Pierre-Emmanuel, Dupoux, Emmanuel

论文摘要

在监督环境中,对自动语音识别(ASR)的跨语性和多语言培训进行了广泛的研究。这假设存在语音和拼写转录的平行语料库。最近,已经提出了对比度预测编码(CPC)算法,以预先列出使用未标记数据的ASR系统。在这项工作中,我们研究了无监督的预定训练是否跨语言很好。我们表明,对CPC预处理提取物的特征进行了轻微的修改,这些功能可以很好地转移到其他语言,甚至超过了受监督的预读。这显示了对语言资源很少的语言的无监督方法的潜力。

Cross-lingual and multi-lingual training of Automatic Speech Recognition (ASR) has been extensively investigated in the supervised setting. This assumes the existence of a parallel corpus of speech and orthographic transcriptions. Recently, contrastive predictive coding (CPC) algorithms have been proposed to pretrain ASR systems with unlabelled data. In this work, we investigate whether unsupervised pretraining transfers well across languages. We show that a slight modification of the CPC pretraining extracts features that transfer well to other languages, being on par or even outperforming supervised pretraining. This shows the potential of unsupervised methods for languages with few linguistic resources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源