论文标题

密集膜:使用预期行为在密集的人群中实时导航

DenseCAvoid: Real-time Navigation in Dense Crowds using Anticipatory Behaviors

论文作者

Sathyamoorthy, Adarsh Jagan, Liang, Jing, Patel, Utsav, Guan, Tianrui, Chandra, Rohan, Manocha, Dinesh

论文摘要

我们提出了Densecavoid,这是一种新型的导航算法,用于通过浓密的人群导航机器人,并通过预测行人行为来避免碰撞。我们的公式使用视觉传感器和行人轨迹预测算法来跟踪一组输入框架的行人,并提供边界框,以在将来的时间内推断行人位置。我们的混合方法将这一轨迹预测与基于强化的学习碰撞避免方法相结合,以训练一项政策,以在运行时产生更平滑,更安全,更健壮的轨迹。我们在现实的3-D模拟中对静态和动态场景进行培训,并与多个行人一起训练。在实践中,我们的混合方法很好地概括了看不见的现实世界情景,并且可以在室内场景中通过密集的人群(〜1-2人类)导航机器人,包括狭窄的走廊和大厅。与未使用预测的情况相比,我们观察到我们的方法将机器人在人群中的冻结的发生最多减少了48%,并且在轨迹长度和平均到达时间方面的表现相当。

We present DenseCAvoid, a novel navigation algorithm for navigating a robot through dense crowds and avoiding collisions by anticipating pedestrian behaviors. Our formulation uses visual sensors and a pedestrian trajectory prediction algorithm to track pedestrians in a set of input frames and provide bounding boxes that extrapolate the pedestrian positions in a future time. Our hybrid approach combines this trajectory prediction with a Deep Reinforcement Learning-based collision avoidance method to train a policy to generate smoother, safer, and more robust trajectories during run-time. We train our policy in realistic 3-D simulations of static and dynamic scenarios with multiple pedestrians. In practice, our hybrid approach generalizes well to unseen, real-world scenarios and can navigate a robot through dense crowds (~1-2 humans per square meter) in indoor scenarios, including narrow corridors and lobbies. As compared to cases where prediction was not used, we observe that our method reduces the occurrence of the robot freezing in a crowd by up to 48%, and performs comparably with respect to trajectory lengths and mean arrival times to goal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源