论文标题

当地的面部属性通过介入

Local Facial Attribute Transfer through Inpainting

论文作者

Durall, Ricard, Pfreundt, Franz-Josef, Keuper, Janis

论文摘要

术语属性转移是指以这样的方式更改图像的任务,即给定输入图像的语义解释转向了预期的方向,该方向通过语义属性量化。突出的示例应用是面部特征和表情的照片现实变化,例如改变头发的颜色,增加微笑,放大鼻子或改变场景的整个环境,例如将夏季景观转变为冬季全景。属性转移的最新进展主要基于生成深的神经网络,使用各种技术在发电机的潜在空间中操纵图像。 在本文中,我们为局部属性转移的常见子任务提供了一种新颖的方法,其中只需要更改面部的一部分才能实现语义变化(例如,去除胡须)。与以前的方法相比,通过生成新的(全局)图像来实施此类局部变化,我们建议将本地属性转移作为介入问题。仅删除和再生图像的一部分,我们的属性转移介绍生成对抗网络(ATI-GAN)能够利用本地上下文信息专注于属性,同时保持背景未修饰,从而产生视觉上的合理结果。

The term attribute transfer refers to the tasks of altering images in such a way, that the semantic interpretation of a given input image is shifted towards an intended direction, which is quantified by semantic attributes. Prominent example applications are photo realistic changes of facial features and expressions, like changing the hair color, adding a smile, enlarging the nose or altering the entire context of a scene, like transforming a summer landscape into a winter panorama. Recent advances in attribute transfer are mostly based on generative deep neural networks, using various techniques to manipulate images in the latent space of the generator. In this paper, we present a novel method for the common sub-task of local attribute transfers, where only parts of a face have to be altered in order to achieve semantic changes (e.g. removing a mustache). In contrast to previous methods, where such local changes have been implemented by generating new (global) images, we propose to formulate local attribute transfers as an inpainting problem. Removing and regenerating only parts of images, our Attribute Transfer Inpainting Generative Adversarial Network (ATI-GAN) is able to utilize local context information to focus on the attributes while keeping the background unmodified resulting in visually sound results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源