论文标题

边缘与不平等,三角形,未知形状和两个玩家匹配

Edge Matching with Inequalities, Triangles, Unknown Shape, and Two Players

论文作者

Bosboom, Jeffrey, Chen, Charlotte, Chung, Lily, Compton, Spencer, Coulombe, Michael, Demaine, Erik D., Demaine, Martin L., Filho, Ivan Tadeu Ferreira Antunes, Hendrickson, Dylan, Hesterberg, Adam, Hsu, Calvin, Hu, William, Korten, Oliver, Luo, Zhezheng, Zhang, Lillian

论文摘要

我们分析了边缘匹配难题的几种新变体的计算复杂性。首先,我们分析了相邻瓷砖之间的不平等(而不是平等)的约束,证明了严格不平等的问题NP统计数字,但对于非平等性不平等而言。其次,我们分析了三种类型的三角边缘匹配,其中一种是多项式,另一种是NP完整的。这三个都是#P-Complete。第三,我们分析未指定目标形状的情况,而我们只是想放置(正方形)瓷砖,以使边缘匹配(恰好);这个问题是NP完成的。第四,我们考虑了基于$ 1 \ times n $ edge匹配的四个2播放器游戏,其中四个都是pspace-complete。我们的大多数NP硬度降低都是简单的,新近证明的#P和ASP完整性,例如$ 1 \ times n $ edge匹配。

We analyze the computational complexity of several new variants of edge-matching puzzles. First we analyze inequality (instead of equality) constraints between adjacent tiles, proving the problem NP-complete for strict inequalities but polynomial for nonstrict inequalities. Second we analyze three types of triangular edge matching, of which one is polynomial and the other two are NP-complete; all three are #P-complete. Third we analyze the case where no target shape is specified, and we merely want to place the (square) tiles so that edges match (exactly); this problem is NP-complete. Fourth we consider four 2-player games based on $1 \times n$ edge matching, all four of which are PSPACE-complete. Most of our NP-hardness reductions are parsimonious, newly proving #P and ASP-completeness for, e.g., $1 \times n$ edge matching.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源