论文标题

可预测呼吸异常和疾病的强大深度学习框架

Robust Deep Learning Framework For Predicting Respiratory Anomalies and Diseases

论文作者

Pham, Lam, McLoughlin, Ian, Phan, Huy, Tran, Minh, Nguyen, Truc, Palaniappan, Ramaswamy

论文摘要

本文提出了一个强大的深度学习框架,以检测呼吸道录音中的呼吸道疾病。完整的检测过程首先涉及前端特征提取,其中记录被转换为传达光谱和时间信息的光谱图。然后,后端深度学习模型将这些特征分类为呼吸道疾病或异常的类别。通过术语基准数据集进行呼吸道声音的实验,评估了框架对声音进行分类的能力。本文在本文中做出了两个主要贡献。首先,我们对呼吸周期长度,时间分辨率和网络体系结构等因素如何影响最终预测准确性提供了广泛的分析。其次,提出了一个新型的基于深度学习的框架,用于检测呼吸道疾病,并且与最先进的方法相比,表现非常好。

This paper presents a robust deep learning framework developed to detect respiratory diseases from recordings of respiratory sounds. The complete detection process firstly involves front end feature extraction where recordings are transformed into spectrograms that convey both spectral and temporal information. Then a back-end deep learning model classifies the features into classes of respiratory disease or anomaly. Experiments, conducted over the ICBHI benchmark dataset of respiratory sounds, evaluate the ability of the framework to classify sounds. Two main contributions are made in this paper. Firstly, we provide an extensive analysis of how factors such as respiratory cycle length, time resolution, and network architecture, affect final prediction accuracy. Secondly, a novel deep learning based framework is proposed for detection of respiratory diseases and shown to perform extremely well compared to state of the art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源