论文标题

自我监督的心电图表示情感识别

Self-supervised ECG Representation Learning for Emotion Recognition

论文作者

Sarkar, Pritam, Etemad, Ali

论文摘要

我们利用了电动图(ECG)的情感识别的自我监督的深度任务学习框架。提出的解决方案包括学习的两个阶段a)学习心电图表示和b)学习对情绪进行分类。 ECG表示是通过信号转换识别网络学习的。该网络从未标记的ECG数据中学习高级抽象表示。将六种不同的信号转换应用于ECG信号,并将转换识别作为借口任务执行。在借口任务上训练模型有助于网络学习时空表示,这些表示可以很好地跨越不同的数据集和不同的情绪类别。我们将自我监督网络的权重转移到情感识别网络中,在该网络中,卷积层被冷冻,并用标记的ECG数据训练了密集的层。我们表明,与使用完全监督的学习训练的网络相比,提出的解决方案大大提高了性能。新的最新结果是在四个利用数据集的唤醒,价,情感状态和压力的分类中设置的。进行了广泛的实验,提供了有趣的见解,以实现使用多任务自我监督结构而不是单任务模型,以及借口自我监督任务所需的最佳难度水平。

We exploit a self-supervised deep multi-task learning framework for electrocardiogram (ECG) -based emotion recognition. The proposed solution consists of two stages of learning a) learning ECG representations and b) learning to classify emotions. ECG representations are learned by a signal transformation recognition network. The network learns high-level abstract representations from unlabeled ECG data. Six different signal transformations are applied to the ECG signals, and transformation recognition is performed as pretext tasks. Training the model on pretext tasks helps the network learn spatiotemporal representations that generalize well across different datasets and different emotion categories. We transfer the weights of the self-supervised network to an emotion recognition network, where the convolutional layers are kept frozen and the dense layers are trained with labelled ECG data. We show that the proposed solution considerably improves the performance compared to a network trained using fully-supervised learning. New state-of-the-art results are set in classification of arousal, valence, affective states, and stress for the four utilized datasets. Extensive experiments are performed, providing interesting insights into the impact of using a multi-task self-supervised structure instead of a single-task model, as well as the optimum level of difficulty required for the pretext self-supervised tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源