论文标题

具有内置传感器和深度学习的智能手机冒名顶替检测

Smartphone Impostor Detection with Built-in Sensors and Deep Learning

论文作者

Hu, Guangyuan, He, Zecheng, Lee, Ruby

论文摘要

在本文中,我们表明,与过去的基于传感器的用户身份验证(逆问题)相比,基于传感器的冒名顶替检测可以在较低的硬件成本下实现出色的冒险者检测准确性,该验证使用了更常规的机器学习算法。尽管这些方法使用其他智能手机用户的传感器数据来构建(用户,非用户)分类模型,但我们进一步表明,仅使用合法用户的传感器数据仍然可以达到良好的准确性,同时保留用户传感器数据的隐私(行为生物渗透学)。对于此用例,关键贡献表明,通过比较预测误差分布,可以显着改善复发性神经网络(RNN)深度学习模型的检测准确性。这需要生成和比较经验概率分布,我们在有效的硬件设计中显示。另一个新颖的贡献是SID(智能手机冒名顶替检测)的设计,这是一种简约的硬件加速器,可以将其集成到未来的智能手机中,以在不同情况下进行有效的冒名顶替检测。我们的SID模块可以实施许多常见的机器学习和深度学习算法。 SID在并行性和性能中也可以扩展,并且易于编程。我们展示了SID的FPGA原型,该原型可以提供足够的性能以用于实时冒险者检测,并且硬件的复杂性和功耗非常低(比相关的面向性能的FPGA加速器少1-2个数量级)。我们还表明,与使用GPU的CPU相比,SID的FPGA实施消耗的能量要少64.41倍。

In this paper, we show that sensor-based impostor detection with deep learning can achieve excellent impostor detection accuracy at lower hardware cost compared to past work on sensor-based user authentication (the inverse problem) which used more conventional machine learning algorithms. While these methods use other smartphone users' sensor data to build the (user, non-user) classification models, we go further to show that using only the legitimate user's sensor data can still achieve very good accuracy while preserving the privacy of the user's sensor data (behavioral biometrics). For this use case, a key contribution is showing that the detection accuracy of a Recurrent Neural Network (RNN) deep learning model can be significantly improved by comparing prediction error distributions. This requires generating and comparing empirical probability distributions, which we show in an efficient hardware design. Another novel contribution is in the design of SID (Smartphone impostor Detection), a minimalist hardware accelerator that can be integrated into future smartphones for efficient impostor detection for different scenarios. Our SID module can implement many common Machine Learning and Deep Learning algorithms. SID is also scalable in parallelism and performance and easy to program. We show an FPGA prototype of SID, which can provide more than enough performance for real-time impostor detection, with very low hardware complexity and power consumption (one to two orders of magnitude less than related performance-oriented FPGA accelerators). We also show that the FPGA implementation of SID consumes 64.41X less energy than an implementation using the CPU with a GPU.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源