论文标题
边缘门控的CNN,用于大量语义分割的医学图像
Edge-Gated CNNs for Volumetric Semantic Segmentation of Medical Images
论文作者
论文摘要
纹理和边缘为图像识别提供了不同的信息。边缘和边界编码形状信息,而纹理表现出区域的外观。尽管卷积神经网络(CNN)在计算机视觉和医学图像分析应用中取得了成功,但仅学习了纹理抽象,这通常会导致不精确的边界描述。在医学成像中,专家手动细分通常依赖器官边界。例如,要手动分割肝脏,医生通常首先识别边缘,然后填充分段掩模。在这些观察结果的激励下,我们提出了一个被称为边缘门控的CNN(EG-CNN)的插件模块,可以与现有的编码器decoder架构一起使用,以处理边缘和纹理信息。 EG-CNN学会了强调编码器中的边缘,通过辅助边缘监督预测清晰的边界,并将其输出与原始CNN输出融合在一起。我们在两个公开可用的数据集上使用各种主流CNN评估了EG-CNN的有效性,即Brats 19和Kits 19用于脑瘤和肾脏语义分割。我们证明了EG-CNN的添加如何始终提高分割精度和泛化性能。
Textures and edges contribute different information to image recognition. Edges and boundaries encode shape information, while textures manifest the appearance of regions. Despite the success of Convolutional Neural Networks (CNNs) in computer vision and medical image analysis applications, predominantly only texture abstractions are learned, which often leads to imprecise boundary delineations. In medical imaging, expert manual segmentation often relies on organ boundaries; for example, to manually segment a liver, a medical practitioner usually identifies edges first and subsequently fills in the segmentation mask. Motivated by these observations, we propose a plug-and-play module, dubbed Edge-Gated CNNs (EG-CNNs), that can be used with existing encoder-decoder architectures to process both edge and texture information. The EG-CNN learns to emphasize the edges in the encoder, to predict crisp boundaries by an auxiliary edge supervision, and to fuse its output with the original CNN output. We evaluate the effectiveness of the EG-CNN with various mainstream CNNs on two publicly available datasets, BraTS 19 and KiTS 19 for brain tumor and kidney semantic segmentation. We demonstrate how the addition of EG-CNN consistently improves segmentation accuracy and generalization performance.