论文标题

识别性和可能不可逆转的SVARMA模型的估计:一种新的参数化

Identifiability and Estimation of Possibly Non-Invertible SVARMA Models: A New Parametrisation

论文作者

Funovits, Bernd

论文摘要

本文介绍了可能不可转化的结构矢量自动回归移动平均值(SVARMA)模型的参数化,可识别性和最大似然性(ML)估计。与以前的文献相反,使用Wiener-HOPF分解(WHF)的MA多项式矩阵的新颖表示侧重于模型的多元性质,对其结构产生洞察力,并使用此结构来设计优化算法。特别是,它允许在单元圆内外的确定零的位置参数,并允许以零为零的MA零,可以将其解释为信息延迟。这与动态随机通用平衡(DSGE)模型的数据驱动评估非常相关。通常,可以测试对冲击传输矩阵以及确定根部位置的识别限制。此外,我们为ML估计量的渐近正态性和分析表达式和信息矩阵提供了低水平的条件。作为应用程序,我们估算了Blanchard和Quah模型,并表明我们的方法提供了有关使用标准宏观经济模型的不可抑制性的进一步见解。这些和进一步的分析是在有据可查的R包中实施的。

This article deals with parameterisation, identifiability, and maximum likelihood (ML) estimation of possibly non-invertible structural vector autoregressive moving average (SVARMA) models driven by independent and non-Gaussian shocks. In contrast to previous literature, the novel representation of the MA polynomial matrix using the Wiener-Hopf factorisation (WHF) focuses on the multivariate nature of the model, generates insights into its structure, and uses this structure for devising optimisation algorithms. In particular, it allows to parameterise the location of determinantal zeros inside and outside the unit circle, and it allows for MA zeros at zero, which can be interpreted as informational delays. This is highly relevant for data-driven evaluation of Dynamic Stochastic General Equilibrium (DSGE) models. Typically imposed identifying restrictions on the shock transmission matrix as well as on the determinantal root location are made testable. Furthermore, we provide low level conditions for asymptotic normality of the ML estimator and analytic expressions for the score and the information matrix. As application, we estimate the Blanchard and Quah model and show that our method provides further insights regarding non-invertibility using a standard macroeconometric model. These and further analyses are implemented in a well documented R-package.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源