论文标题
在全球表面空气温度重新分析数据集中绘制大气波和揭开相干结构
Mapping atmospheric waves and unveiling phase coherent structures in a global surface air temperature reanalysis dataset
论文作者
论文摘要
在对经验信号的分析中,检测相关性捕获复杂系统元素之间真正相互作用的相关性是跨学科应用程序的一项艰巨的任务。在这里,我们分析了每日分辨率的全球数据集(SAT)。希尔伯特分析用于获得不同地理区域中SAT季节性周期的相位,瞬时频率和振幅信息。对相动态的分析揭示了具有连贯的季节性的大区域。对瞬时频率的分析发现了由负相关和正相关的交替区域形成的清洁波模式。相反,对振幅动力学的分析可以通过其他大规模结构发现波模式。这些结构被解释为因为幅度动力学受到长时间和短时间起作用的过程的影响,而瞬时频率的动力学主要由快速过程控制。因此,希尔伯特分析允许解散气候过程并跟踪行星大气波。我们的结果与复杂振荡信号的分析有关,因为它们为揭示在不同时间尺度上起作用的相互作用提供了一般策略。
In the analysis of empirical signals, detecting correlations that capture genuine interactions between the elements of a complex system is a challenging task with applications across disciplines. Here we analyze a global data set of surface air temperature (SAT) with daily resolution. Hilbert analysis is used to obtain phase, instantaneous frequency and amplitude information of SAT seasonal cycles in different geographical zones. The analysis of the phase dynamics reveals large regions with coherent seasonality. The analysis of the instantaneous frequencies uncovers clean wave patterns formed by alternating regions of negative and positive correlations. In contrast, the analysis of the amplitude dynamics uncovers wave patterns with additional large-scale structures. These structures are interpreted as due to the fact that the amplitude dynamics is affected by processes that act in long and short time scales, while the dynamics of the instantaneous frequency is mainly governed by fast processes. Therefore, Hilbert analysis allows to disentangle climatic processes and to track planetary atmospheric waves. Our results are relevant for the analysis of complex oscillatory signals because they offer a general strategy for uncovering interactions that act at different time scales.