论文标题
及时检测状态变化的信息新鲜度
Information Freshness for Timely Detection of Status Changes
论文作者
论文摘要
在本文中,我们旨在在网络理论中建立信息时代(AOI)之间的联系,信息理论中的信息不确定性以及时间序列分析的检测延迟。我们考虑了一个动态系统,其状态在离散时间点发生变化,直到首次将变更点传递到目的地后产生的更新后,才能检测到状态变化。我们介绍了一个信息理论指标,以衡量目的地的信息新鲜度,并将其命名为广义信息时代(GAOI)。我们表明,在任何独立于州的在线更新策略下,如果系统的潜在状态根据固定的马尔可夫链的发展而发展,则GAOI与AOI成正比。此外,累积的GAOI和AOI与一段时间内所有变化点的预期累积检测延迟成正比。因此,任何(G)最佳状态独立的更新策略等效地将相应的预期变更点检测延迟最小化,这验证了(g)AOI在实时状态监控中的基本作用。此外,我们还研究了贝叶斯变化点检测方案,其中基础状态进化不是静止的。尽管AOI不再与检测延迟明确相关,但我们表明累积GAOI仍然是预期检测延迟的仿射功能,这表明GAOI在捕获动态系统中捕获新鲜的信息时的多功能性。
In this paper, we aim to establish the connection between Age of Information (AoI) in network theory, information uncertainty in information theory, and detection delay in time series analysis. We consider a dynamic system whose state changes at discrete time points, and a state change won't be detected until an update generated after the change point is delivered to the destination for the first time. We introduce an information theoretic metric to measure the information freshness at the destination, and name it as generalized Age of Information (GAoI). We show that under any state-independent online updating policy, if the underlying state of the system evolves according to a stationary Markov chain, the GAoI is proportional to the AoI. Besides, the accumulative GAoI and AoI are proportional to the expected accumulative detection delay of all changes points over a period of time. Thus, any (G)AoI-optimal state-independent updating policy equivalently minimizes the corresponding expected change point detection delay, which validates the fundamental role of (G)AoI in real-time status monitoring. Besides, we also investigate a Bayesian change point detection scenario where the underlying state evolution is not stationary. Although AoI is no longer related to detection delay explicitly, we show that the accumulative GAoI is still an affine function of the expected detection delay, which indicates the versatility of GAoI in capturing information freshness in dynamic systems.