论文标题
无监督域适应的双向生成
Bi-Directional Generation for Unsupervised Domain Adaptation
论文作者
论文摘要
无监督的域适应性促进了未标记的目标域,依靠已建立的源域信息。常规方法强行降低潜在空间中的域差异将导致固有数据结构的破坏。为了平衡域间隙的缓解和固有结构的保存,我们提出了一个双向生成域的适应模型,该模型具有一致的分类器,可以插入两个中间域以桥梁源和目标域。具体而言,使用两个跨域发电机来合成一个域在另一个域中。一致的分类器和跨域对准约束可以进一步增强我们提出的方法的性能。我们还设计了两个共同优化的分类器,以最大程度地提高目标样本预测的一致性。广泛的实验验证了我们提出的模型在标准跨域视觉基准测试上的最先进。
Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information. The conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure. To balance the mitigation of domain gap and the preservation of the inherent structure, we propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains. Specifically, two cross-domain generators are employed to synthesize one domain conditioned on the other. The performance of our proposed method can be further enhanced by the consistent classifiers and the cross-domain alignment constraints. We also design two classifiers which are jointly optimized to maximize the consistency on target sample prediction. Extensive experiments verify that our proposed model outperforms the state-of-the-art on standard cross domain visual benchmarks.